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Abstract

This paper mathematically analyzes the integral generalized policy iteration (I-GPI) algorithms applied to a class of continuous-time linear
quadratic regulation (LQR) problems with the unknown system matrix A. GPI is the general idea of interacting policy evaluation and
policy improvement steps of policy iteration (PI), for computing the optimal policy. We first introduce the update horizon }, and then
show that i) all of the I-GPI methods with the same } can be considered equivalent and that ii) the value function approximated in the
policy evaluation step monotonically converges to the exact one as }→∞. This reveals the relation between the computational complexity
and the update (or time) horizon of I-GPI as well as between I-PI and I-GPI in the limit }→ ∞. We also provide and discuss two modes
of convergence of I-GPI; I-GPI behaves like PI in one mode, and in the other mode, it performs like value iteration for discrete-time
LQR and infinitesimal GPI (}→ 0). From these results, a new classification of the integral reinforcement learning is formed with respect
to }. Two matrix inequality conditions for stability, the region of local monotone convergence, and data-driven (adaptive) implementation
methods are also provided with detailed discussion. Numerical simulations are carried out for verification and further investigations.
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1 Introduction

In the field of computational intelligence, generalized pol-
icy iteration (GPI) is the general idea of interacting the two
consecutive steps of (iterative) policy iteration (PI) or actor-
critic methods, for computing the optimal policy in a Markov
decision process (MDP). The respective two revolving steps
are policy evaluation, making the value function in critic
consistent with the current policy, and policy improvement,
making the policy in actor greedy with respect to the cur-
rent value function (Sutton & Barto, 1998). This general
idea allows one of these two steps to be performed without
completing the other step a priori. Almost all reinforcement
learning (RL) and approximate dynamic programming (DP)
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methods are well described by this idea of GPI including
actor-critic methods and modified PI (Bertsekas & Tsitsik-
lis, 1996; Puterman & Shin, 1978; Sutton & Barto, 1998).

Modified PI, classified as a class of GPI methods (Sutton &
Barto, 1998), was first formulated by van Nunen (1976) and
Puterman & Shin (1978) in finite MDP frameworks. It was
created by approximating the policy evaluation of the exact
PI by the finite k-number of Bellman fixed point iterations;
the exact PI (k→∞) and value iteration (VI) (k = 1) fall into
special cases of this (Bertsekas & Tsitsiklis, 1996; Sutton &
Barto, 1998). Here, the natural number k, called the iteration
horizon of GPI in this paper, mediate a trade-off between the
computational complexity (large k) and the approximation
error (small k). For all k ∈ N∪{∞}, the convergence to the
optimal solution was proved with the connection to the DP
operator and its properties (Bertsekas & Tsitsiklis, 1996).

Based on the results of finite MDP frameworks, extensive
research has been carried out to develop the RL and approxi-
mate DP algorithms for continuous-state dynamical systems
(CSDS) in both discrete-time (DT) domain (Al-Tamimi,
2007; Jiang & Jiang, 2010; Lendelius, 1997; Prokhorov &
Wunsch, 1997; Si, Barto, Powell, & Wunsch, 2004; Wang,
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Liu, Wei, Zhao, & Jin, 2012; Webos, 1992; Zhang, Huang,
& Lewis, 2009) and recently, continuous-time (CT) domain
(Bhasin, Kamalapurkar, Johnson, Vamvoudakis, Lewis, &
Dixon, 2013; Doya, 2000; Hanselmann, Noakes, & Zaknich,
2007; Lee, Park, & Choi, 2010, 2012; Vamvoudakis &
Lewis, 2010; Vrabie, 2009; Vrabie & Lewis, 2009).Wang,
Zhang, & Liu (2009) and Lewis & Vrabie (2009) performed
recent surveys about these algorithms. In these cases, how-
ever, most of the research was focused only on the two
extreme cases, namely, PI (k→∞, maximum computational
complexity) and VI (k = 1, maximum approximation error).
In those studies, the development of VI for CSDS was par-
allel to that for a finite MDP (Al-Tamimi, 2007; Lee et al.,
2010; Lewis & Vrabie, 2009; Prokhorov & Wunsch, 1997;
Si et al., 2004; Vrabie, 2009; Wang et al., 2009; Webos,
1992), but PI for CSDS additionally needs the assump-
tion of an initial stabilizing policy to guarantee its stability
and convergence (Lee et al., 2012; Lewis & Vrabie, 2009;
Vrabie, 2009; Wang et al., 2009). Moreover, there are two
different ways of implementing the policy evaluation of
PI (Lewis & Vrabie, 2009; Vrabie, 2009)—one is based
on the Bellman’s fixed point iterations similar to the finite
MDP case, resulting in high computational complexity due
to the extremely large k (theoretically, k → ∞), and the
other uses the difference regression vectors which are less
likely excited than those of VI and thereby decrease the
computability and accuracy of the value function. There-
fore, compared with the VI methods, the PI algorithms for
CSDS are computationally expensive, regardless of which
implementation method is used.

For CSDS, the process of solving a given optimal control
problem generally falls into that of computing the solution
of the underlying Hamilton-Jacobi-Bellman (HJB) equation
whose analytical solution is difficult to obtain in general.
In the case of the PI and VI, the HJB equation is itera-
tively solved by revolving policy evaluation and improve-
ment steps, performed by critic and actor networks, respec-
tively. In this process, the Lyapunov function associated with
the current policy is evaluated or approximated by critics in
the (approximate) policy evaluation step, and the policy is
updated by actor in the policy improvement step, based on
the current (approximated) Lyapunov function (Al-Tamimi,
2007; Lewis & Vrabie, 2009; Si et al., 2004; Vrabie, 2009;
Wang et al., 2009). While PI finds the exact Lyapunov func-
tion by policy evaluation, VI approximates the Lyapunov
function by only one step recursion.

For linear systems, the HJB equation becomes the well-
known algebraic Riccati equation (ARE), and the above two
steps of PI and VI can be considered the process of solving
the associated Lyapunov matrix equation/recursion and up-
dating the policy by using the matrix solution (Al-Tamimi,
2007; Jiang & Jiang, 2010; Lendelius, 1997; Lee et al.,
2010, 2012; Lewis & Vrabie, 2009; Vrabie, 2009; Zhang
et al., 2009). In fact, this kind of iterative method was al-
ready developed independently, with a number of analy-
ses on convergence, stability, and computational complexity
in the fields of control engineering and numerical analysis

(Feitzinger, Hylla, & Sachs, 2009; Hewer, 1971; Kleinman,
1968; Lancaster & Rodman, 1995; Stoorvogel & Weeren,
1994). From these results, a number of control and learning
schemes based on PI or VI were also analyzed by show-
ing the equivalence of each to one of the existing iterative
methods. For PI methods, which exactly evaluate the Lya-
punov matrix solution, it was shown that in the case of linear
quadratic regulations (LQR), they are equivalent to Newton
methods and thereby guarantee the stability and 2nd-order
monotone decreasing convergence (Jiang & Jiang, 2010; Lee
et al., 2012; Lewis & Vrabie, 2009; Vrabie, 2009). In the
case of DT VI, the equivalence to the Lyapunov matrix re-
cursions also provides convergence to the optimal solution
(Al-Tamimi, 2007; Lendelius, 1997; Lewis & Vrabie, 2009;
Zhang et al., 2009); the convergence is monotone and in-
creasing for LQR case. Similar analytical results also exist
for nonlinear PI and VI algorithms (Al-Tamimi, 2007; Lewis
& Vrabie, 2009; Vrabie, 2009).

The concept of GPI in DT CSDS was introduced by Lewis
& Vrabie (2009) from the perspectives of modified PI. Sim-
ilar to GPI in MDP frameworks, VI (k = 1) and PI (k→ ∞)
for DT CSDS are two extreme cases of this GPI. On the
other hand, a number of actor-critic methods for input-
affine CSDS have been proposed in CT domain from the
GPI viewpoint—concurrent actor-critic learning (Bhasin et
al., 2013; Hanselmann et al., 2007; Vamvoudakis & Lewis,
2010) and modified PI (Vrabie, 2009; Vrabie & Lewis,
2009). The GPI method we have focused on in this paper is
the modified PI given by Vrabie & Lewis (2009). This GPI
method, together with the related PI and VI as two special
cases, belongs to a class of algorithms known as integral
(or interval) RL (I-RL). These I-RL algorithms iteratively
perform (approximate) policy evaluation and improvement
steps without knowing the system drift dynamics, using the
integral reinforcement signal made by observing the cost
during the finite time horizon Ts (Lewis & Vrabie, 2009;
Vrabie, 2009). On the contrary, the concurrent actor-critic
methods require either full-knowledge about the system dy-
namics (Hanselmann et al., 2007; Vamvoudakis & Lewis,
2010) or an associated system identifier (Bhasin et al., 2013).
In this paper, the I-RL algorithms based on GPI, PI, and VI
methods for CT CDSD will be called integral GPI (I-GPI),
integral PI (I-PI), and integral VI (I-VI), respectively.

Among the I-RL methods, considerable efforts have been
made on the analysis of I-PI in terms of stability, mono-
tonicity, and convergence. The analyses of I-PI are based on
the equivalence to certain numerical iteration methods. As
mentioned above, it was proved that in the case of LQR, I-PI
is equivalent to Kleinman (1968)’s Newton method which
monotonically improves the policy by iterations and guar-
antees the global stability and 2nd-order convergence (Vra-
bie, 2009). Further analysis and extensions can be found in
(Lee et al., 2012). In the case of I-VI for LQR, the stability
and convergence conditions were investigated based on ma-
trix operators (Lee et al., 2010; Vrabie, 2009). For the pol-
icy evaluation step of I-GPI, Vrabie & Lewis (2009) proved
that, under an admissible policy, the value function approx-
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imated by the k-number of Bellman’s fixed-point iterations
converges to the exact one as k→ ∞. The proof was based
on the DP operator and its properties, similar to the modi-
fied PI in finite MDP frameworks. To the best of the authors’
knowledge, however, there is no further analysis of the I-
GPI algorithms, even for the LQR case in terms of stability,
monotone convergence, and equivalences.

In this paper, we mathematically analyze I-GPIs applied to
CT LQR problems with unknown system matrix A. While
the I-GPI method given by Vrabie & Lewis (2009) assumes
an initial stabilizing policy, ours does not for analytical pur-
poses. The update horizon }, first introduced in this paper
as the product of the iteration and time horizons (} := kTs),
plays a central role in the analysis. The main contributions
of this paper can be summarized as follows:

1. From the process of re-derivations of I-GPI, we show that
the I-GPI algorithms that use the same } are all equivalent
in the iteration domain. This shows that for the same }, the
computational complexity due to large k can be lessened
by increasing the time horizon Ts.

2. For policy evaluation recursion of I-GPI, a sub-iteration
in each policy evaluation step, we provide monotone con-
vergence properties with respect to the update horizon },
which imply the equivalence of I-PI and the I-GPI meth-
ods in the limit }→ ∞ under an initial stabilizing policy.
These are the extensions of the work of Vrabie & Lewis
(2009), where only the convergence in the limit of the
iteration horizon (k→ ∞) was investigated.

3. A number of (matrix) inequality conditions are provided
for closed-loop stability and/or global/local monotone
convergence of I-GPI methods. Here, two modes of
global convergence are considered—one, called PI-mode
of convergence, behaves like PI, and the other, called VI-
mode of convergence, occurs for sufficiently small } and
acts like VI for DT LQR and infinitesimal GPI (}→ 0).
Based on these two modes of convergence and the prop-
erties of I-GPI regarding the update horizon }, a new
spectral classification of I-RL algorithms is established
with respect to }, where the infinitesimal version of I-GPI
(}→ 0) is at one extreme tip, and I-PI (}→∞) belongs to
the other extreme tip of the spectrum, as shown in Fig. 1.

All of these analytical results are derived based on the pos-
itive definiteness property of the evaluated value functions
and the matrix iterative formulas equivalent to I-GPI, also
provided in this paper. Data-driven least squares (LS) im-
plementation methods of I-GPI are also proposed, including
the adaptive methods for determining k at each step with-
out violating the presented matrix inequalities. All of those
implementation methods are based on a matrix recursion,
where the multiplicative matrix terms are structured from
the measured data that is sufficiently persistently exciting.
Finally, several numerical simulations are carried out to ver-
ify and further investigate the individual mathematical prop-
erties and LS implementation methods of I-GPI.

This paper is organized as follows. In Section 2, the target

Fig. 1. The classifications of I-RL algorithms.

CT LQR problem is formulated with the associated matrix
operators. In Section 3, we introduce the main I-GPI algo-
rithm represented by the update horizon } in LQR frame-
works and show the equivalences of I-GPIs that have the
same }. Section 4 is devoted to proving the properties of
the policy evaluation recursion of each step of I-GPI such as
positive definiteness and monotone convergence in the limit
}→ ∞. The stability and monotone convergence properties
of I-GPI including those in PI- and VI-modes are shown in
Section 5 with detailed discussions. The new classification
of I-RL with respect to } is also established in this section.
Section 6 illustrates the (adaptive) data-driven LS implemen-
tation methods in LQR frameworks. Finally, the numerical
simulation results for load frequency control systems are il-
lustrated in Section 7 and conclusions follow in Section 8.

Notations: The mathematical symbols used in this paper are
summarized as follows. R+ := {x ∈ R : x ≥ 0} denotes the
set of nonnegative real numbers; Z+ := N∪{0} is the set
of nonnegative integers; the set of all m× n constant real
matrices is denoted by Mm×n. For a matrix X ∈Mn×n, λi(X)
denotes the i-th eigenvalue of X with the decreasing order
Reλn(X) ≤ Reλn−1(X) ≤ ·· · ≤ Reλ1(X). We also denote
∥Z∥ for a matrix Z ∈ Mn×m the spectral norm of Z, i.e.,
∥Z∥ :=

√
λ1(ZT Z).

2 LQR problems and Lyapunov/Riccati operators

In this section, we introduce and briefly discuss LQR prob-
lems and two related operators L (K,P) and R(P), named
Lyapunov and Riccati operators, respectively, with special
focus on the value function Vu(x) for a stabilizing policy
and the optimal solution (u∗,Vu∗(x)). Consider the CT linear
system (t ≥ 0):

ẋt = Axt +But , (1)

for the state xt ∈ Rn, the control input ut ∈ Rm, and the
matrices A ∈Mn×n and B ∈Mn×m, with the infinite-horizon
quadratic performance index

Vu(xt , t) =
∫ ∞

t
xT

τ Sxτ +uT
τ Ruτ dτ
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where S ∈Mn×n and R ∈Mm×m are positive semi-definite
and positive definite matrices, respectively. Throughout the
paper, u(t), ut , and simply u will be used interchangeably
for the input of the system (1).

Let u=−Kx, or simply K, be any linear policy for the system
(1) and AK be its corresponding closed loop matrix A−BK.
Define QK for a policy K as QK := S+KT RK for simplicity.
Then, Vu(xt , t) can be represented in terms of QK as

Vu(xt , t) =x T
t

(∫ ∞

t
eAT

K(τ−t)QK eAK(τ−t) dτ
)

xt = x T
t PKxt ,

where PK is defined as

PK :=
∫ ∞

0
eAT

Kτ QK eAKτ dτ . (2)

If u =−Kx is stabilizing 1 , then the value function Vu(x) =
xT PKx is always finite and PK is the unique positive semi-
definite solution of the Lyapunov equation L (K,PK) = 0,
where the Lyapunov operator L (K,P) is defined as

L (K,P) := AT
KP+PAK +QK . (3)

Here, L (K,PK) = 0 can be easily verified by substituting
(2) into (3) and using standard calculus. Note that the opti-
mal policy u∗ =−K∗x and its corresponding optimal value
function Vu∗(x) = xT PK∗x also satisfy the Lyapunov equa-
tion L (K∗,PK∗) = 0 and the optimal policy is given by
K∗ = R−1BT PK∗ by the conventional optimal control the-
ory. Substituting the optimal gain K∗ = R−1BT PK∗ into the
Lyapunov equation and rearranging the equation, we obtain
the standard ARE R(PK∗) = 0, where the Riccati operator
R(P) is defined as

R(P) := AT P+PA−PBR−1BT P+S

and satisfies R(P) = L (K,P)|K=R−1BT P. The objective of
the GPI methods is to find the optimal solution (K∗,PK∗)
in online fashion by an iterative procedure of solving the
Lyapunov equation L (K,PK) = 0 and updating the control
policy K. For the existence of the unique stabilizing solution
PK∗ , we assume that

Assumption 1 The triple (A,B,S1/2) is stabilizable and de-
tectable.

For a given matrix P∈Mn×n, we also define the P-dependent
control gain matrix KP as KP := R−1BT P for notational con-
venience. Using this notation, we have R(P) = L (KP,P)
from R(P) = L (K,P)|K=R−1BT P and the following lemma
can be obtained which will be extensively used in the anal-
ysis of the I-GPI algorithm.

1 In this paper, a policy u =−Kx is said to be a stabilizing policy
(or simply, stabilizing) if AK is Hurwitz.

Lemma 1 For any P, Φ ∈Mn×n and K ∈Mm×n, the oper-
ators L (·, ·) and R(·) satisfy the followings:

• L (K,P)−L (K,Φ) = AT
K(P−Φ)+(P−Φ)AK , (4)

• L (K,P) = R(P)+(K−KP)
T R(K−KP). (5)

Proof. (4) can be easily verified by substituting (3). For the
proof of (5), note that R(P) can be represented in terms of
KP as

R(P) = AT P+PA−KT
P RKP +S,

and that (K−KP)
T R(K−KP) =KT RK−KT

P RK−KT RKP+
KT

P RKP. Then, the proof is completed by substituting these
and (3) into (5) and rearranging the equation. 2

3 Integral generalized policy iteration and its equiva-
lence

In this section, we present and re-derive the I-GPI algo-
rithms (Vrabie & Lewis, 2009) in LQR frameworks, with
discussions of dynamic programming (DP) operators, opti-
mality principles, and their generalizations. Then we show
the equivalence of all the I-GPI algorithms that have the
same update horizon }.

Regarding the system dynamics (1), the DP operator T Ts
K :

X → X is defined on the space X of continuous functionals
V (x) : Rn→ R, at fixed time t ≥ 0, as

T Ts
K V (xt) :=

∫ t+Ts

t
xT

τ QK xτ dτ +V (xt+Ts), (6)

where the trajectories of xt are generated by the system (1)
with a given control u = −Kx. From this, the generalized
DP operator (T Ts

K )k can be recursively defined for k ∈ Z+

and Ts ∈ R+ as{
(T Ts

K )0V (xt) :=V (xt),

(T Ts
K )k+1V (xt) := (T Ts

K )k[T Ts
K V (xt)]

at fixed time t ≥ 0. Here, k is referred to as the number of
the DP operation T Ts

K [·]. In this paper, we call k ∈ Z+ and
Ts ∈R+ ‘iteration horizon’ and ‘time horizon’, respectively.
This DP operator simplifies the mathematical statements re-
lated to the integral temporal difference (I-TD), optimality
principle, and the I-GPI algorithm. Indeed, the value func-
tion Vu(x) = xT PKx for a stabilizing policy u =−Kx can be
expressed as the following I-TD form:

Vu(xt) =
∫ t+Ts

t
xT

τ QK xτ dτ +
∫ ∞

t+Ts

xT
τ QK xτ dτ︸ ︷︷ ︸

=Vu(xt+Ts )

= T Ts
K Vu(xt). (7)
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A similar expression is also possible for the equation of
Bellman’s optimality principle (Lewis & Vrabie, 2009):

Vu∗(xt) = min
K

T Ts
K Vu∗(xt ). (8)

By using the generalized DP operator, these simple expres-
sions (7)–(8) can be easily extended to the general case with
respect to the update horizon } ∈R+ defined as } := kTs in
this paper.

Theorem 1 The DP operator T Ts
K and its generalized op-

erator (T Ts
K )k for a continuous functional V (x) satisfy

(T Ts
K )kV (xt) = T }

K V (xt). (9)

Proof. Consider the sequence {Wi(xt)}k
i=0 of continu-

ous functionals which is defined by W0(xt) := V (xt) and
Wi(xt) :=T Ts

K Wi−1(xt) for i= 1,2,3, · · · ,k. Then, obviously,
(T Ts

K )kV (xt) =Wk(xt) holds and thereby, one has

(T Ts
K )kV (xt) =

∫ t+Ts

t
xT

τ QK xτ dτ +T Ts
K

[
(T Ts

K )k−2V (xt+Ts)︸ ︷︷ ︸
=Wk−2(xt+Ts )

]
=

∫ t+2Ts

t
xT

τ QK xτ dτ +T Ts
K Wk−3(xt+2Ts)

...

=
∫ t+(k−1)Ts

t
xT

τ QK xτ dτ +T Ts
K W0(xt+(k−1)Ts)

=
∫ t+kTs

t
xT

τ QK xτ dτ +W0(xt+kTs)

= T kTs
K V (xt),

which completes the proof. 2

By Theorem 1, the I-TD formula (7) and the optimality
equation (8) can be easily extended with the generalized DP
operator (T Ts

K )k as

Vu(xt) = (T Ts
K )kVu(xt ), (10)

Vu∗(xt) = min
K

[
(T Ts

K )kVu∗(xt )
]
, (11)

both of which, together with (7) and (8), are closely related
to the I-GPI. Assuming, at i-th iteration, Vi to be the most
accurate approximation of Vu∗ on the right hand side of (11),
one obtains the I-GPI algorithm shown in Algorithm 1 con-
sisting of two main successive steps—approximate policy
evaluation (lines 6–10) and policy improvement (line 11).
At each i-th approximate policy evaluation step, the next
value function Vi+1(x), defined as Vi+1(x) := xT Pi+1x for an

—- Algorithm 1: I-GPI for LQR ————————————–
1: i← 0
2: Initialize P0 ∈Mn×n.
3: Set an initial policy u0 =−K0x not necessarily stabilizing.
4: do {
5: Apply the current policy ui(t) =−Kix(t) to the system (1).

Approximate policy evaluation: Vi+1(xt) = (T Ts
Ki
)kVi(xt)

6: Pi|0← Pi
7: for j = 0 to k−1,
8: find Vi| j+1(x)

(
= xT Pi| j+1x

)
by solving (12).

9: end
10: Pi+1← Pi|k

Policy improvement: Ki+1 = R−1BT Pi+1
11: Ki+1← R−1BT Pi+1

12: i← i+1
13: Apply an exploration signal to excite the state x.

14: } until ∥Pi−Pi−1∥< ε .
——————————————————————————–

indexed matrix Pi+1 ∈Mn×n, is obtained by performing the
basic one-step DP recursion at time t ≥ 0

Vi| j+1(xt) = T Ts
Ki

Vi| j(xt) (12)

k-times (lines 6–10) for the applied current policy ui =−Kix
(line 5), where k is the iteration horizon representing the
number of recursions (12), j ∈ {0,1,2, · · · ,k−1} is the re-
cursion index at the i-th iteration, and Vi| j(x) is a functional
defined as Vi| j(x) := xT Pi| jx for a matrix Pi| j ∈Mn×n indexed
by (i, j). Then, the next policy Ki+1 is updated at each i-
th policy improvement step (line 11) based on Pi+1. In line
13, some exploration signal is injected into the system (1)
through u to hold the excitation condition, which is neces-
sary for the computation of Pi (Lee et al., 2011; Lewis &
Vrabie, 2009) and will be discussed in Section 6. This whole
procedure continues until the value function matrix Pi con-
verges (line 14).

Notice Ki converges whenever Pi does. In addition, the next
lemma states that the convergent point corresponds to the
optimal solution (u∗,Vu∗). This lemma will be used to final-
ize the proofs of monotone convergence in Section 5.

Lemma 2 Consider the sequences {Pi}∞
i=0 and {Ki}∞

i=0 gen-
erated by the I-GPI (Algorithm 1) and let {Pi} be a conver-
gent sequence. Then, under Assumption 1, Pi and Ki con-
verge to the optimal solutions PK∗ and K∗, respectively.

Proof. See Appendix. 2

Unlike the I-GPI given by Vrabie & Lewis (2009), Algo-
rithm 1 does not assume that the initial policy is stabilizing
(line 3); all the other parts of both I-GPIs are the same in
LQR frameworks. In case of a stabilizing policy Ki at i-th
iteration,
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—- Algorithm 2: I-PI for LQR —————————————–
1: i← 0
2: Initialize P0 ∈Mn×n (to zero).
3: Set an initial stabilizing policy u0 =−K0x.
4: do {
5: Apply the current policy ui(t) =−Kix(t) to the system (1).

Policy evaluation: Vui(xt) = T
Tp

Ki
Vui(xt)

6: Find Vi+1(x) (= xT Pi+1x), which is equal to the exact one
Vui(x) (= xT PKi x), by solving Vi+1(xt) = T

Tp
Ki

Vi+1(xt).

Policy improvement: Ki+1 = R−1BT PKi

7: Ki+1← R−1B T Pi+1

8: i← i+1
9: Apply an exploration signal to excite the state x.

10: } until ∥Pi−Pi−1∥< ε .
——————————————————————————–

• the policy evaluation step (line 5–9) attempts to approxi-
mate PKi satisfying L (Ki,PKi) = 0, and as a result, gives
an approximate solution Pi+1 of PKi ;

• the policy improvement step (line 10) updates Ki+1 based
on Pi+1 to improve the policy Ki+1 over Ki, that is, to
achieve, for example, 0≤ PKi+1 ≤ PKi .

Actually, Algorithm 1 with k = ∞ under an initial stabilizing
policy is the same as I-PI (Algorithm 2); Algorithm 1 with
k = 1 corresponds to I-VI, which does not require an initial
stabilizing policy (Vrabie, 2009). With this respect, the I-
GPI (Algorithm 1) contains I-PI and I-VI as two extreme
cases.

Remark 1 At each i-th policy evaluation step, Algorithm 2
exactly evaluates PKi in the value function Vui(x), no matter
what the sampling period TP is. That is, all the I-PIs with
different sampling periods Tp ∈ R+ generate the same se-
quence {PKi}∞

i=0 and thus, can be considered the same. On
the contrary, the I-GPI algorithms were considered the same
only when they had the same time- and iteration-horizons Ts
and k (Vrabie & Lewis, 2009). This equivalence of I-GPIs
can be extended with respect to the update horizon }= kTs.
To see this, note that according to Theorem 1, the mapping
Vi+1(xt) = (T Ts

Ki
)kVi(xt) in approximate policy evaluation of

Algorithm 1 is equivalent to

Vi+1(xt) = T }
Ki

Vi(xt). (13)

This corresponds to the approximation of the I-TD formula
(10) and implies that the I-GPI algorithms with the different
k ∈ N but the same update horizon } = kTs are all equiv-
alent and, hence, have the same convergence speed in the
iteration domain i ∈ Z+ if it converges. Therefore, the com-
putational complexity due to the large iteration horizon k
can be lessened by increasing the time horizon Ts for the
same convergence speed.

4 Monotone convergence properties of policy evalua-
tion recursion

Vrabie & Lewis (2009) mentioned that the approximate pol-
icy evaluation of Algorithm 1 is a fixed point iteration, and
proved the convergence of Vi|k to the exact value function Vui
as k→∞, under a stabilizing policy ui =−Kix. This conver-
gence result induced the equivalence of I-PI (Algorithm 2)
and I-GPI (Algorithm 1) in the limit k→∞, under an initial
stabilizing policy.

We now extend this convergence property and prove the
monotone convergence of Vi|k to Vui as the update horizon
} ∈ R+ goes to infinity. Its proof is based on the following
lemma which shows the several matrix iterative formulas
equivalent to I-GPI. For notational convenience, we let Ai
be the matrix of the i-th closed-loop system, i.e., Ai := AKi .

Lemma 3 Any matrices Pi|l and Pi|l+κ (0≤ l ≤ l +κ < ∞)
generated by i-th approximate policy evaluation of I-GPI
(Algorithm 1) satisfy the following matrix equations:

• Pi|l+κ = eAT
i ∆hPi|le

Ai∆h +
∫ ∆h

0
eAT

i τ QKie
Aiτ dτ, (14)

• Pi|l+κ −Pi|l =
∫ ∆h

0
eAT

i τL (Ki,Pi|l)e
Aiτ dτ, (15)

• L (Ki,Pi|l+κ) = eAT
i ∆hL (Ki,Pi|l)e

Ai∆h, (16)

where ∆h := κTs and Ki is a given policy at i-th iteration,
not necessarily stabilizing.

Proof. First, note that Vi|l+κ(xt) =T ∆h
Ki

Vi|l(xt) holds by (12)
and Theorem 1. Then, the following expansion of (9)

T ∆h
Ki

Vi|l(xt) =
∫ ∆h

0
xT

t+τ QKixt+τ dτ + xT
t+∆hPi|lxt+∆h

=xT
t

[∫ ∆h

0
eAT

i τ QKie
Aiτ dτ + eAT

i ∆hPi|le
Ai∆h

]
xt ,

and the substitution of this into Vi|l+κ(xt) = T ∆h
Ki

Vi|l(xt) di-
rectly proves (14). Next, adding and subtracting Pi|l on the
right hand side of (14) and using the fact that

eAT
i ∆hYeAi∆h−Y =

∫ ∆h

0
eAT

i τ(AT
i Y +YAi)eAiτ dτ (17)

holds for any matrix Y ∈Mn×n, we have (15). For the proof
of (16), note that (4) in Lemma 1 implies

L (Ki,Pi|l+κ)

= L (Ki,Pi|l)+AT
i (Pi|l+κ −Pi|l)+(Pi|l+κ −Pi|l)Ai.

Here, substituting (15) and using (17) with Y = L (Ki,Pi|l),
one can see that the second term AT

i (Pi|l+κ−Pi|l)+(Pi|l+κ−
Pi|l)Ai of the right hand side is equal to eAT

i ∆hL (Ki,Pi|l)eAi∆h−
L (Ki,Pi|l), which completes the proof of (16). 2
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Based on Lemma 3, we prove the following theorem which
states i) the positive definite property of the updated value
function Vi| j and ii) its (monotone) convergence to Vui in the
limit }→ ∞.

Theorem 2 Consider the policy evaluation of Algorithm 1
at the i-th iteration. Then,

Pi|0 ≥ 0 =⇒ Pi| j ≥ 0 ∀ j ∈ {1,2, · · · ,k}. (18)

Moreover, if the policy ui =−Kix is stabilizing, then,

(1) Vi+1 converges to Vui as }= kTs→ ∞;

(2) for any } ∈ R+ and j ∈ {1,2, · · · ,k},
• L (Ki,Pi|0)≤ 0 implies L (Ki,Pi| j)≤ 0 and

PKi ≤ Pi|k ≤ ·· · ≤ Pi| j ≤ ·· · ≤ Pi|0; (19)

• 0≤L (Ki,Pi|0) implies 0≤L (Ki,Pi| j) and

Pi|0 ≤ ·· · ≤ Pi| j ≤ ·· · ≤ Pi|k ≤ PKi . (20)

Proof. For the proof of (18), assume 0≤ Pi|0 and notice that
QKi is always positive semi-definite by definition. Then, ob-
viously, both eAT

i }Pi|0eAi} and eAT
i τ QKie

Aiτ are also positive
semi-definite for all h, τ ∈ R+. Hence, (14) in Lemma 3
with l = 0 and κ = j implies Pi| j ≥ 0 for all j ∈ {1,2, · · · ,k},
which proves (18).

Next, assume that Ki is stabilizing, which implies Ai is Hur-
witz. Then, the convergence of Pi+1 = Pi|k to PKi can be
proven by showing L (Ki,Pi|k)→ 0 since PKi ≥ 0 satisfying
the Lyapunov equation L (Ki,PKi) = 0 is uniquely deter-
mined (Lancaster & Rodman, 1995, Theorem 8.5.1). Here,
(16) in Lemma 3 with l = 0 and κ = k (implying ∆h = })
guarantees the convergence L (Ki,Pi|k)→ 0 since eAi}, and

thereby, eAT
i }L (Ki,Pi|0)eAi} converge to zero under Hurwitz

Ai as } goes to ∞.

For the proof of monotonicity (19), suppose L (Ki,Pi|0)≤ 0.

Then, eAT
i tL (Ki,Pi|0)eAit ≤ 0 holds for all t ≥ 0. There-

fore, we have Pi|1−Pi|0 ≤ 0 and L (Ki,Pi|1)≤ 0 by (15) and
(16) in Lemma 3, respectively, with l = 0 and κ = 1. From
L (Ki,Pi|1) ≤ 0, we also obtain Pi|1−Pi|0 ≤ 0 in the same
manner with l = 1 and κ = 1. Continuing this procedure up
to l = k−1, all with κ = 1, yields (19), where the inequal-
ity PKi ≤ Pi|k is obtained from L (Ki,Pi|k) ≤ 0 and (15) in
Lemma 3 with l = k and κ→∞; in this limit, Pl+κ converges
to PKi if Ki is stabilizing. This completes the proof of (19)
and the monotonicity (20) can be also proven by assuming
L (Ki,Pi|0)≥ 0 and following the same procedure. 2

Remark 2 By Theorem 2, one can see that under stabilizing
Ki, Vi+1(xt) obtained by approximate policy evaluation of I-
GPI with finite k and Ts is an approximation of Vui(xt), and

the error |Vi+1(xt)−Vui(xt)| can be made arbitrarily small by
increasing }. For the limit case }→∞, I-GPI under an initial
stabilizing policy becomes I-PI (Algorithm 2) which gener-
ates stabilizing policies and evaluates the exact value func-
tion Vui(xt) = Vi+1(xt) satisfying (7). Note that the update
horizon } can be enlarged by either increasing the iteration
horizon k or the time horizon Ts. However, the larger k is, the
higher is the computational complexity; the larger Ts is, the
slower the learning speed in the time domain is. Therefore,
there exists a trade-off between the computational complex-
ity and learning speed in policy evaluation, and one should
carefully determine these parameters k, Ts, and of course, }
(= kTs).

5 Stability, monotone convergence, and a new classifi-
cation of I-GPI

Based on the results in Section 4, this section provides the
monotone convergence and stability results of I-GPI and then
establishes a new classification of I-GPI algorithms in terms
of the update horizon }. First, for notational convenience,
define the increments ∆Pi, ∆Ki, and ∆K∗i as ∆Pi := Pi+1−Pi,
∆Ki := Ki+1−Ki, and ∆K∗i := K∗−KPi

2 , respectively. Also,
let M(i,}) be defined by

M(i,}) :=
∫ }

0
eAT

i τL (Ki,Pi)eAiτ dτ. (21)

Then, by applying (15) and (16) in Lemma 3 to Vi+1(xt) =

(T Ts
Ki
)kVi(xt), with l = 0 and κ = k, we obtain the following

two equivalent matrix formulas

∆Pi = M(i,}), (22)

L (Ki,Pi+1) = eAT
i }L (Ki,Pi)eAi}, (23)

where L (Ki,Pi) for i≥ 1 in (23) satisfies R(Pi) =L (Ki,Pi)
due to the policy improvement step Ki = R−1BT Pi of I-
GPI. In addition, (5) in Lemma 1 implies that the operators
R(Pi+1) and L (Ki,Pi+1) satisfy

R(Pi+1) = L (Ki,Pi+1)−∆KT
i R∆Ki. (24)

This explains how the policy improvement step Ki+1 =
R−1BT Pi+1 influences the Riccati error R(Pi+1) through
∆KT

i R∆Ki, wherein L (Ki,Pi+1) results from the policy
evaluation of I-GPI and satisfies (23).

Together with all of the equivalent formulas (22)–(24) above
and Lemma 2, the next lemma is essentially needed for
the convergence analysis. The lemma states an additional
equivalent matrix formula of I-GPI in relation to the optimal
solution (K∗,PK∗).

2 KPi differs from Ki only when i = 0 since K0 is arbitrarily given
(see the definition of KP and note that Ki = R−1BT Pi for i≥ 1).
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Lemma 4 Under Assumption 1, Pi generated by I-GPI (Al-
gorithm 1) satisfies

PK∗ = Pi +
∫ ∞

0
eAT

K∗ τ [R(Pi)+(∆K∗i )
T R∆K∗i

]
eAK∗ τ dτ.

(25)

Proof. Substituting P = Pi, Φ = PK∗ , and K = K∗ into (4)
and (5) in Lemma 1, we have

L (K∗,Pi) = AT
K∗(Pi−PK∗)+(Pi−PK∗)AK∗ (26)

L (K∗,Pi) = R(Pi)+(K∗−KPi)
T R(K∗−KPi) (27)

where L (K∗,PK∗) = R(PK∗) = 0 is used and the existence
and uniqueness of K∗ and PK∗ are guaranteed by Assumption
1. Substituting (27) into (26) yields the following generalized
Lyapunov equation:

AT
K∗(Pi−PK∗)+(Pi−PK∗)AK∗ = R(Pi)+(∆K∗i )

T R∆K∗i

Since Assumption 1 implies that K∗ is stabilizing, the proof
is completed by applying Lyapunov theorem (Lancaster &
Rodman, 1995, Theorem 8.5.1) to this generalized Lyapunov
equation. 2

In the analyses of I-GPI, it is assumed that all the Pi’s gener-
ated by I-GPI are positive semi-definite. This is guaranteed
under the assumption that

Assumption 2 P0 ∈Mn×n is positive semi-definite,

as shown in the next proposition whose proof is trivial by
(18) in Theorem 2 and mathematical induction. So, in this
section, we analyze I-GPI algorithms only with Assumption
2, instead of assuming all Pi’s are positive semi-definite.

Proposition 1 (Positive definiteness) Assume that the ini-
tial matrix P0 ∈Mn×n is positive semi-definite (resp. posi-
tive definite). Then, Pi ∈Mn×n is positive semi-definite (resp.
positive definite) for all i ∈ N.

5.1 Matrix inequality conditions for stable learning

Now, we are ready to state our main theorems about I-GPI
algorithms. In this subsection, several matrix inequality con-
ditions are given, all of which are sufficient to guarantee that
the updated policies are stabilizing.

Lemma 5 Assume that Ki is stabilizing and Pi+1 ∈Mn×n is
positive semi-definite. If L (Ki,Pi+1)≤QKi+1 holds for Ki+1
updated by the policy improvement step of I-GPI (line 10 of
Algorithm 1), then Ki+1 is also stabilizing.

Proof. See Appendix. 2

Note that Assumption 2 implies that Pi+1 is also positive
semi-definite for all i ∈ Z+ by Proposition 1. So, from
Lemma 5 and mathematical induction, we obtain the follow-
ing stability theorem which states the general matrix bound
on L (Ki,Pi+1) at each iteration for stability of I-GPI.

Theorem 3 (Stability) Suppose that K0 is stabilizing. Then,
under Assumption 2, if Ki and Pi+1 satisfy L (Ki,Pi+1) ≤
QKi+1 for all i ∈ Z+, then, Ki is stabilizing for all i ∈ Z+.

Proof. Assume Ki is stabilizing and satisfies L (Ki,Pi+1)≤
QKi+1 . Then, the application of Lemma 5 with Pi+1 ≥ 0 im-
plies that Ki+1 is also stabilizing and mathematical induction
concludes that Ki is stabilizing for all i ∈ Z+. 2

The condition L (Ki,Pi+1) ≤ QKi+1 in Theorem 3 provides
stability during and after the learning phase, but the di-
rect evaluation of L (Ki,Pi+1) requires the knowledge of
the matrix A at each iteration, while I-GPI does not. The
next theorem provides another inequality condition for the
closed-loop stability, which does not explicitly depend on
L (Ki,Pi+1).

Theorem 4 (Stability) Suppose that Assumption 2 holds
and K0 is a stabilizing policy that satisfies L (K0,P0)≤QK0 .
Then, Ki is stabilizing for all i ∈ Z+ if Ki and Ki+1 satisfy

eAT
i }QKi e

Ai} ≤ QKi+1 , ∀i ∈ Z+. (28)

Proof. Assume that Ki is stabilizing and satisfies L (Ki,Pi)≤
QKi . Then, we have from (23) and (28)

L (Ki,Pi+1) = eAT
i }L (Ki,Pi)eAi} ≤ eAT

i }QKie
Ai} ≤ QKi+1 .

So, since Pi+1 ≥ 0 holds (see Assumption 2 and Proposition
1), Ki+1 is also stabilizing by Lemma 5. Substituting the
inequality into (24) and rearranging it yield

L (Ki+1,Pi+1) = R(Pi+1)≤ QKi+1 −∆KT
i R∆Ki ≤ QKi+1 .

Therefore, mathematical induction with L (K0,P0) ≤ QK0 ,
proves that Ki is stabilizing for all i ∈ Z+. 2

Remark 3 Although condition (28) depends on the system
matrix A, it is contained only in the form of exponentials.
By virtue of this fact, (28) can be easily checked without
knowing the system matrix A. This issue will be further
discussed in detail in Section 6, where a data-driven method
is proposed to check the condition (28) without explicit use
of the knowledge of A.
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5.2 PI-mode of convergence and stability

In Section 3, we mentioned that in the limit }→ ∞, I-GPI
under an initial stabilizing policy is equivalent to I-PI (Algo-
rithm 2) which generates the sequence {Ki}i∈N of stabilizing
policies and their exact value function matrices {PKi}i∈Z+ .
Moreover, the equivalence to Kleinman (1968)’s Newton
method (Vrabie, 2009) implies that I-PI guarantees 2nd-order
monotone convergence of PKi to PK∗ with decreasing order

0≤ PK∗ ≤ ·· · ≤ PKi+1 ≤ PKi ≤ ·· · ≤ PK0 .

In the following, we state PI-mode of convergence of I-GPI,
which implies that, under certain conditions, Ki generated by
I-GPI is stabilizing for all i, and Pi monotonically converges
to PK∗ in a similar manner to I-PI.

Theorem 5 (PI-mode of convergence) Suppose the initial
policy K0 and the initial matrix P0 satisfy L (K0,P0) ≤ 0.
Then, under Assumptions 1–2, the following hold for all
i ∈ Z+:

• (Stability) Ki is stabilizing and satisfies the Lyapunov
inequalities L (Ki,Pi+1) ≤ 0 and L (Ki+1,Pi+1) ≤
−∆KT

i R∆Ki. That is,{
AT

i Pi+1 +Pi+1Ai ≤−QKi

AT
i+1Pi+1 +Pi+1Ai+1 ≤−QKi+1 −∆KT

i R∆Ki.
(29)

• (Monotone convergence from above) The sequences
{Pi}∞

i=0 and {Ki}∞
i=0 converge to the optimal solution PK∗

and K∗, respectively, with the following monotonicities:{
0≤ PKi ≤ Pi+1 ≤ Pi

0≤ PK∗ ≤ ·· · ≤ Pi+1 ≤ Pi ≤ ·· · ≤ P0.
(30)

• (2nd-order monotone decreasing) There exists c > 0 such
that if (Pi+1,Ki+1) and Ki for some i ∈ Z+ satisfy

−(αi−1)∆KT
i R∆Ki ≤L (Ki,Pi+1)≤ 0, (31)

where αi ≥ 1 is a constant, then, for all such i,

∥Pi+1−PK∗∥ ≤ c ·αi ∥Pi−PK∗∥2 . (32)

Proof. First, assume L (Ki,Pi)≤ 0 for some i ∈ Z+. Then,
we have L (Ki,Pi+1) ≤ 0 by (23) and substituting this into
(24) yields

R(Pi+1) = L (Ki,Pi+1)−∆KT
i R∆Ki ≤−∆KT

i R∆Ki.

Therefore, mathematical induction with (K0,P0) satis-
fying L (K0,P0) ≤ 0 implies the Lyapunov inequali-
ties L (Ki,Pi+1) ≤ 0 and L (Ki+1,Pi+1) = R(Pi+1) ≤
−∆KT

i R∆Ki ≤ 0 hold for all i ∈ Z+.

(Proof of stability). L (Ki,Pi+1)≤ 0 implies L (Ki,Pi+1)≤
QKi+1 , and by Theorem 3 with Assumption 2, one can con-
clude that for all i ∈ Z+, Ki is stabilizing.

(Proof of monotone convergence). Proposition 1 with As-
sumption 2 guarantees Pi ≥ 0 ∀i ∈ Z+. So, (19) in Theo-
rem 2 implies that Pi+1 satisfies 0≤ PKi ≤ Pi+1 ≤ Pi, which
holds for all i ∈ Z+ (∵ L (Ki,Pi)≤ 0 for all i ∈ Z+). There-
fore, since it is monotonically decreasing and bounded by 0,
the sequence {Pi}∞

i=0 monotonically converges, and thereby,
{Ki}∞

i=0 also converges (∵ Ki = R−1BT Pi ∀i ∈N). Let P̄ and
K̄ be their respective limit points, i.e., P̄ = limi→∞ Pi and
K̄ = limi→∞ Ki. Then, P̄ satisfies

0≤ P̄≤ Pi+1 ≤ Pi for all i ∈ Z+,

and Lemma 2 implies P̄ = PK∗ and K̄ = K∗, respectively,
which proves the convergence with the monotonicity (30).

(Proof of 2nd-order convergence). First, note that one has
0 ≤ Pi+1−PK∗ by the monotone convergence (30), and the
equations (24) and (31) imply

−αi∆KT
i R∆Ki ≤R(Pi+1)≤−∆KT

i R∆Ki.

From this inequality and (25), one obtains

0≤ Pi+1−PK∗ ≤−
∫ ∞

0
eAT

K∗ τR(Pi+1)eAK∗ τ dτ

≤ αi

∫ ∞

0
eAT

K∗ τ ∆KT
i R∆KieAK∗ τ dτ. (33)

By virtue of the fact that

0≤ X ≤ Y for X , Y ∈Mn×n =⇒ ∥X∥ ≤ ∥Y∥ ,

one can take the matrix norm ∥ · ∥ on (33) and obtain the
following inequality using the properties of the norm:

∥Pi+1−PK∗∥ ≤ αi

∫ ∞

0

∥∥∥eAT
K∗ τ ∆KT

i R∆KieAK∗ τ
∥∥∥ dτ

≤ αi

(∫ ∞

0
∥eAK∗ τ∥2dτ

)
∥BR−1BT∥︸ ︷︷ ︸

=:c

·∥Pi−Pi+1∥2

= c ·αi ∥Pi−Pi+1∥2 .

Now, the proof of the 2nd-order monotone decreasing (32)
can be done by using the fact that by the monotonicity (30),
0 ≤ Pi−Pi+1 ≤ Pi−PK∗ holds for all i ∈ Z+, which again
implies ∥Pi−Pi+1∥ ≤ ∥Pi−PK∗∥. 2

Remark 4 The properties of I-GPI in PI-mode of conver-
gence shown in Theorem 5 are similar to those of I-PI which
is equivalent to Kleinman (1968)’s Newton method. Actu-
ally, the I-GPI algorithm can be considered an inexact Klein-
man’s Newton algorithm (Feitzinger et al., 2009) with the
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residual “L (Ki,Pi+1)”, which can be made arbitrarily small
by increasing } in the policy evaluation step. Moreover, de-
noting the Frechet derivative of L (Ki,Pi) taken with respect
to Pi by L ′

Ki,Pi
, we can see that I-GPI is also equivalent to

the quasi-Newton method updated by

Pi+1 = Pi +
(
L ′

Ki,Pi

)−1
[
L (Ki,Pi)−L (Ki,Pi+1)

]
,

which converges to the Newton method as the residual
L (Ki,Pi+1) goes to zero (}→ ∞). In this limit case, I-GPI
becomes I-PI as mentioned in Section 4, and the Lyapunov
inequalities in (29) of Theorem 5 become their respective
Lyapunov equations{

AT
i Pi+1 +Pi+1Ai =−QKi

AT
i+1Pi+1 +Pi+1Ai+1 =−QKi+1 −∆KT

i R∆Ki,
(34)

which provide the closed-loop stability for all i∈Z+. More-
over, (34) implies that i) the residual L (Ki,Pi+1) becomes
zero and ii) R(Pi+1) satisfies R(Pi+1) =−∆KiR∆Ki for all
i ∈ Z+. Here, the former guarantees the condition (31) with
αi = 1, which implies the uniform 2nd-order monotone con-
vergence of I-PI, and the latter implies R(Pi) ≤ 0, which
provides an alternative approach to the proof of monotone
convergence of I-PI, as shown in this paper.

5.3 Local monotone convergence under stable closed-loop
dynamics

Next, we investigate local monotone decreasing and conver-
gence of I-GPI near the solution PK∗ satisfying R(PK∗) = 0.
For notational convenience, let Φ(i,}) be defined as

Φ(i,}) :=
∫ }

0
∥eAiτ∥2 dτ. (35)

In the following, the convergence property will be discussed
only in the local set Ωr

i (r = 1,2) defined by

Ωr
i :=

{
Pi ∈Mn×n : ρ(r,i) < 1−∥eAi}∥2/∥L (Ki,Pi)∥r−1}

where ρ(r,i) := ∥∆KT
i R∆Ki∥/∥L (Ki,Pi)∥r. Here, it can be

easily derived from the definitions of Ωr
i and ρ(r,i) (r = 1,2)

that {
∥L (Ki,Pi)∥< 1 =⇒Ω2

i ⊂Ω1
i

∥L (Ki,Pi)∥ ≥ 1 =⇒Ω1
i ⊆Ω2

i .

Moreover, for having both Ω1
i ̸= ϕ and Ω2

i ̸= ϕ , ∥eAi}∥< 1
should be satisfied, which is attainable with a sufficiently
large } ∈ R+ when Ai is Hurwitz.

Theorem 6 (Local monotone convergence) Assume that
Ai is Hurwitz for all i ∈ Z+. Then, under Assumption 1,

• (Monotone decreasing) if Pi ∈ Ωr
i for r ∈ {1,2}, then,

R(Pi+1) satisfies

∥R(Pi+1)∥ ≤ ∥L (Ki,Pi)∥r. (36)

• (Monotone convergence) if Pi ∈ Ω1
i for all i ∈ Z+, then,

{Pi}∞
i=0 converges to PK∗ with the 1st-order monotonicity

(36) (r = 1).

Proof. Taking the matrix norm ∥ ·∥ of (24), using the basic
properties of the norm with the substitution of (23), and
rearranging the equation yield the following for r = 1,2:

∥R(Pi+1)∥ ≤ ∥eAi}∥2∥L (Ki,Pi)∥+∥∆KiR∆Ki∥

=

[
∥eAi}∥2

∥L (Ki,Pi)∥r−1 +ρ(r,i)

]
∥L (Ki,Pi)∥r.

(37)

For ∥R(Pi+1)∥< ∥L (Ki,Pi)∥r, the value in brackets in (37)
should be less than 1, which corresponds to Pi ∈ Ωr

i , the
completion of the proof of monotone decreasing.

Next, assume that Pi ∈ Ω1
i for all i ∈ Z+. Then, by the

above argument, ∥R(Pi)∥ is monotonically decreasing and
bounded by ‘0’ as follows:

0≤ ·· · ≤ ∥R(Pi+1)∥ ≤ ∥R(Pi)∥ ≤ ·· · ≤ ∥L (K0,P0)∥

where Ki = R−1BT Pi is substituted for all i∈N. This implies
{R(Pi)} and hence {Pi} are convergence sequences under
this norm, and so is {Ki} as well. Therefore, denoting P̄ =
limi→∞ Pi and K̄ = limi→∞ Ki, we can conclude P̄ = PK∗ and
K̄ = K∗ by Lemma 2, which completes the proof of the local
monotone convergence. 2

Remark 5 To enlarge the convergence region Ωr
i (r = 1,2),

both ∥eAi}∥2 ≪ 1 and ρ(r,i) ≈ 0 are necessary. The former
can be achieved by policy evaluation with a Hurwitz matrix
Ai and a sufficiently large update horizon }. Especially, we
obtain ∥eAi}∥2→ 0 in the case of I-PI (}→∞). On the other
hand, the latter ρ(r,i) ≈ 0 can be obtained when the policy Ki
is almost stationary (i.e. ∆Ki ≈ 0). Note that, if ∆Ki = 0, pol-
icy improvement does not contribute to the variations of Pi,
and hence, I-GPI becomes equal to its policy evaluation step
(no policy improvement). Therefore, in the case of ∆Ki = 0,
we have R(Pi+1) = L (Ki,Pi+1), and the global monotone
convergence is achieved by Theorem 2.

Remark 6 From the definitions of M(i,}) and Φ(i,}) (see (21)
and (35)), one can easily derive the inequality ∥M(i,})∥ ≤
Φ(i,})∥L (Ki,Pi)∥. This again yields

ρ(r,i) ≤Φ2
(i,})∥B

T R−1B∥∥L (Ki,Pi)∥2−r.

where ∆KT
i R∆Ki = ∆PiBR−1BT ∆Pi and (22) are used (see

also (21)). By substituting the right hand side of this into
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ρ(r,i) in Ωr
i and rearranging the result, the local regions Ωr

i ⊆
Ωr

i (r = 1,2) for r-th order decreasing/convergence can be
obtained as follows:

Ω1
i := {Pi ∈Mn×n : ∥L (Ki,Pi)∥< Di},

Ω2
i := {Pi ∈Mn×n : 0≤ Ei < ∥L (Ki,Pi)∥< 1}, (38)

where Di :=
1−∥eAi}∥2

∥BR−1B T∥Φ2
(i,})

, Ei :=
∥eAi}∥2

1−∥BR−1B T∥Φ2
(i,k)

.

Here, it can be easily checked that

1 < Di and ∥BR−1B T∥Φ2
(i,}) < 1

imply 0≤Ei < 1, so guarantee the existence of the nonempty
set Ω2

i ̸= ϕ (just rearrange the inequality 1 < Di). Although
these sets Ω1

i and Ω2
i are rather conservative, they provide the

concrete local ranges for the local monotone convergence.
Especially, (38) guarantees 2nd-order local decreasing up
to Ei under ∥BR−1BT∥Φ2

(i,}) < 1 without the assumption of
L (K0,P0)≤ 0. For the I-PI case (}→ ∞), Ei converges to
zero since lim}→∞ ∥eAi}∥= 0 (∵ Ai is Hurwitz in I-PI). More
detailed discussions regarding Ω1

i and Ω2
i are shown in our

preliminary result (Lee et al., 2011).

5.4 Monotone increasing and VI-mode of convergence

It has been shown that VI for DT LQR has the follow-
ing monotone increasing convergence property (Lendelius,
1997; Lewis & Vrabie, 2009; Zhang et al., 2009):{

limi→∞ Pi = PK∗ and
0 = P0 ≤ P1 ≤ ·· · ≤ Pi ≤ Pi+1 ≤ ·· · ≤ PK∗

(39)

under zero initial value function V0(x) ≡ 0 (P0 = 0), where
{Pi}i∈Z+ is generated by VI for DT LQR. In this case, the
initial policy is not necessarily stabilizing.

We call this kind of monotone convergence “VI-mode of
convergence”, the counter part of PI-mode of convergence
(see Fig. 2(a)). In the following, we discuss monotone in-
creasing and this VI-mode of convergence of I-GPI methods.

Theorem 7 Under Assumptions 1–2 with 0 ≤ P0 ≤ PK∗ , if
Ki and Pi satisfy L (Ki,Pi)≥ 0, ∀i∈ {0,1,2, · · · , l−1}, then
{Pi}l

i=0 possesses the monotone increasing property:

0≤ P0 ≤ ·· · ≤ Pi ≤ Pi+1 ≤ ·· · ≤ Pl ≤ PK∗ . (40)

Moreover, if L (Ki,Pi)≥ 0 for all i ∈ Z+, then, {Pi}∞
i=0 con-

verges to PK∗ with the monotonicity (40) ∀i ∈ Z+.

Proof. For each i ∈ {0,1,2,3, · · · , l − 1}, L (Ki,Pi) ≥ 0
and (20) in Theorem 2 implies 0 ≤ Pi ≤ Pi+1 (positive

semi-definiteness comes from Proposition 1). Next, we
obtain PK∗ ≥ Pi ∀i ∈ {1,2, · · · , l − 1} from (25) since
R(Pi)=L (Ki,Pi)≥ 0 by assumption and (∆K∗i )

T R∆K∗i ≥ 0
(PK∗ ≥ P0 is assumed for i = 0). Rearranging all these
inequalities yields

0≤ Pi ≤ Pi+1 ≤ PK∗ ,

which holds for all i ∈ {0,1,2, · · · , l−1} by the assumption
L (Ki,Pi) ≥ 0 for all such i. Therefore, we have (40), and
the monotone convergence to the optimal solution can be
directly proven by the assumption of L (Ki,Pi) ≥ 0 for all
i ∈ Z+ and Lemma 2. 2

This theorem with 0 ≤ P0 ≤ PK∗ and L (K0,P0) ≥ 0 obvi-
ously guarantee the monotone increasing (40) up to some
finite l ∈ N (the trivial case is l = 1). For I-GPI meth-
ods with P0 = 0, this monotone increasing is also valid for
any given initial policy K0 not necessarily stabilizing since
L (K0,P0) = KT

0 RK0 + Q ≥ 0 holds. On the other hand,
for VI-mode of convergence, I-GPI should generate the se-
quences {Pi} and {Ki} (= R−1BT Pi), both of which satisfy
L (Ki,Pi) ≥ 0 for all i ∈ N. However, this is not attainable
in general since, even in the case where Ki is stabilizing that
satisfies L (Ki,Pi)≥ 0 under 0≤ Pi ≤ PK∗ , R(Pi+1) can be
indefinite or negative semi-definite for large } by (24). This
is because the residual L (Ki,Pi+1) in (24) becomes zero as
}→ ∞ (see (23) and also Theorem 2). More obviously and
intuitively, since PK∗ is the optimal solution, any PKi for a
stabilizing Ki satisfies 0≤ PK∗ ≤ PKi , which in turn implies
that Pi would not satisfy 0≤ Pi ≤ PK∗ especially when } is
large (an example of this case is PK∗ ≤ Pi ≤ PKi ). Therefore,
VI-mode of convergence is not attainable in general.

In contrast, I-GPI methods with a sufficiently small }> 0 can
generate the sequence {Pi}, which satisfies L (Ki,Pi) ≥ 0
for all i ∈ N and hence, converges in VI-mode by Theorem
7. In this case, (P0,K0) is required to satisfy L (K0,P0)> 0,
instead of L (K0,P0)≥ 0.. To see this, assume L (Ki,Pi)>
0. Then, L (Ki,Pi+1) is also positive definite by (23) or
Theorem 2, which again implies there is εi > 0 such that
εiIn ≤L (Ki,Pi+1). So, if ∆Ki satisfies

∆KT
i R∆Ki < εiIn, (41)

then Pi+1 satisfies R(Pi+1)> 0 by (24); the induction implies
R(Pi)> 0 for all i ∈N, and the VI-mode of convergence is
guaranteed by Theorem 7. Here, since

∥∥∆KT
i R∆Ki

∥∥ can be
made arbitrarily small by decreasing } > 0 (notice ∆Ki =
R−1BT M(i,}) by (22) and M(i,}) → 0 as }→ 0), the I-GPI
with a sufficiently small } > 0 yields ∆Ki satisfying (41)
and thereby, can generate the convergent sequence {Pi} in
VI-mode by Theorem 7.

This VI-mode of convergence can be also possible for I-VI
with sufficiently small Ts > 0 since it belongs to the spe-
cial class of I-GPI with k = 1 and sufficiently small } > 0.
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Actually, it can be shown that the infinitesimal version of I-
GPI (}→ 0) is governed by the forward-in-time differential
Riccati equation (DRE) Ṗt = R(Pt) (0 ≤ t < ∞) which can
be obtained by dividing both sides of (22) by } and limit-
ing }→ 0 (Vrabie, 2009). In this case, under the zero initial
condition P0 = 0, which is the special case of 0≤ P0 ≤ PK∗ ,
and R(P0) ≥ 0 shown in Theorem 7, Lancaster & Rod-
man (1995) showed that Pt generated by the forward-in-time
DRE monotonically converges to PK∗ with the monotonicity
0≤ Pt1 ≤ Pt2 ≤ PK∗ for t1 ≤ t2 (Lancaster & Rodman, 1995,
Theorem 16.4.3). Theorem 7 and the above discussions im-
ply that this monotone convergence result can be extended
to the general case “0≤ P0 ≤ PK∗ and R(P0)≥ 0.”

5.5 Summary and the new classification of I-GPI

So far, we have shown five properties regarding monotone
convergence and/or stability of I-GPI methods, and the two
main results are PI- and VI-mode of convergence, which
correspond to monotone decreasing and increasing conver-
gence, respectively. Fig. 2(a) describes these two modes of
convergence of I-GPI.

• In PI-mode, Pi remains in the region {0 ≤ PK∗ ≤ P} for
all i ∈ Z+ and converges like PI methods, e.g., I-PI for
CT LQR (I-GPI in the limit }→ ∞).

• In VI-mode, Pi is in the other region {0 ≤ P ≤ PK∗} for
all i ∈ Z+, and converges like VI for DT LQR.

Note that PI- and VI-mode of convergence of I-GPI can be
considered the two counterparts of (19) and (20) in Theorem
2 describing monotone convergence of each policy evalua-
tion step. While the choice of the update horizon }> 0 does
not affect PI-mode of convergence (Theorem 5), VI-mode
of convergence can be achieved only with sufficiently small
} > 0 (or in the limit }→ 0) as discussed in Section 5.4;
otherwise, L (Ki,Pi)≥ 0 is not guaranteed after some finite
step i = l and in this case, Theorem 7 only implies I-GPI
generates Pi that is monotonically increasing up to l. On the
other hand, PI-mode of convergence is possible even in the
limit }→ 0 and }→ ∞ as long as K0 and P0 ≥ 0 satisfy
L (K0,P0)≤ 0.

From the above discussions, infinitesimal GPI (}→ 0) with
0≤ P0 ≤ PK∗ and I-PI (}→ ∞ under stabilizing K0) can be
considered the representatives of I-GPI in VI- and PI-mode
of convergence, respectively. It is also shown in Section 3
that I-GPI with the same } are all equal in iteration domain
(see Remark 1). From these facts, we establish a new classi-
fication of I-RL (and I-GPI) methods with respect to the up-
date horizon }, as shown in Fig. 1, where infinitesimal GPI
is at one extreme tip (}→ 0), and I-PI is at the other extreme
tip of the spectrum (}→∞). I-VI (k = 1) and I-GPI (fininte
k) are posed on the middle of the spectrum, and their con-
vergence properties are determined depending on the update
horizon } and conditions presented in this section.

Unlike VI-mode, I-GPI in PI-mode of convergence guaran-
tees the closed-loop stability for all i ∈ Z+ (Theorem 5).

(a) PI- and VI-mode of convergence

(b) Stability and monotone convergence

Fig. 2. Summary of stability and monotone convergence properties
of I-GPI.

With the assumption that K0 is stabilizing, three types of
matrix inequalities have been presented for stability of I-
GPI, namely, L (Ki,Pi+1) ≤ QKi+1 in Theorem 3, (28) in
Theorem 4, and L (Ki,Pi+1)≤ 0 in Theorem 5 (PI-mode of
convergence). As can be seen from Fig. 2(b),

• the first one is the most general condition for stability,
and hence can be considered the sufficient condition of
the other two;
• the second one (28) is rather restricted, but can be checked

in online learning without using the knowledge of the
matrix A (see the next section for this issue).
• The last one L (Ki,Pi+1)≤ 0 for PI-mode of convergence

obviously implies L (Ki,Pi+1)≤QKi+1 and thereby guar-
antees the closed-loop stability. Moreover, Ki and Pi gen-
erated by I-GPI in PI-mode satisfy L (Ki,Pi+1) ≤ 0, so
the agent does not need to check any matrix inequality
for stability, except L (K0,P0)≤ 0 at i = 0 (see Theorem
5). For the first two conditions, the agent should check
the inequality at every step to guarantee the stability.

Fig. 2(b) also illustrates that local monotone convergence in
Theorem 6 is achieved under the stable closed-loop dynam-
ics, but it is not restricted or affected by any matrix inequal-
ities in Theorems 3–5. Instead, Pi should be near the solu-
tion PK∗ , i.e., Pi ∈ {P∈Mn×n : ∥R(P)∥ ≤ ε} for sufficiently
small ε > 0 (see Ω1 in Remark 6). In this case, the norm
of R(Pi) monotonically decreases and eventually converges
to ‘0’ (= R(PK∗)) (see Theorem 6). Here, sufficiently large
}> 0 under stable closed-loop dynamics enlarges the region
of convergence Ω1 (or Ω1) since it makes

∥∥eAi}
∥∥≈ 0.
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6 Data-driven Implementation

Based on the mathematical results, we propose in this section
data-driven methods for implementing I-GPI (Algorithm 1),
specifically, the LS methods for uniquely evaluating Pi| j sat-
isfying (12) and determining k at each iteration, without vi-
olating the matrix inequalities given in Section 5. The pro-
posed method can be also used for implementing the I-GPI
given by Vrabie & Lewis (2009). Let ti > 0 be the time at
which the i-th step of Algorithm 1 is started. Then, for τ > 0
define Wi(τ) as the solution of the differential equation

Ẇi(τ) = xT
ti+τ QKixti+τ , Wi(0) = 0.

The method is based on the data pairs (xi[N],Wi[N]) sampled
at i-th iteration with the same period Ts and the same i-th
policy ui =−Kix, where xi[N] and Wi[N] are defined as

xi[N] := xti+NTs , Wi[N] :=Wi(NTs),

respectively, for N = 0,1,2, · · · ,Ni,max. Here, Ni,max denotes
the number of data pairs (xi[N],Wi[N]) the I-GPI agent col-
lected. For N = 0, since Wi[0] = 0 by the zero-initial con-
dition, Wi[0] does not need to be sampled, but xi[0] is addi-
tionally measured by the agent. Therefore, the numbers of
the sampled data xi[N] and Wi[N] at each iteration will be
Ni,max +1 and Ni,max, respectively.

For notational convenience, let xi, j ∈ R be the j-th ele-
ment of xi[N], and xi, j:n ∈ Rn− j+1 be the column vector de-
fined as xi, j:n := [xi, j xi, j+1 · · · xi,n ]

T . We also denote the
minimum number of the sampled data pairs (xi[N],Wi[N])
required to implement Algorithm 1 by Ni,min. Then, the
number of the measured data “Ni,max” at the i-th iteration
should be larger than or equal to Ni,min, i.e., Ni,min ≤ Ni,max
for reasonable implementation. This minimum requirement
Ni,min is actually connected to the certain excitation condi-
tion that should be satisfied for the computation of Vi| j+1(x),
( j = 0,1,2, · · ·k−1) by (12).

Assumption 3 (Excitation condition) For each i-th step,
there exist Ni,min ∈ N, α ∈ R+, and ᾱ ∈ R+ such that

αI ≤
Ni,max−1

∑
N=0

x̄i[N]x̄T
i [N]≤ ᾱI, (42)

for all Ni,max ≥ Ni,min, where x̄i[N] ∈ Rn(n+1)/2 is the Kro-
necker product quadratic polynomial basis vector of xi[N],
that is, x̄i[N] :=

[
xi,1xT

i,1:n xi,2xT
i,2:n xi,3xT

i,3:n · · · x2
i,n
]T
.

For description of the method, let X̄i,p (p = 0,1) be the
matrix of dimension n(n+1)/2-by-Ni,max, which is made by
column-wisely collecting x̄i[N], that is,

X̄i,p :=
[
x̄i[p] x̄i[p+1] x̄i[p+2] · · · x̄i[p+Ni,max−1]

]
.

Then, one can see that the excitation condition (42) can be
rewritten in terms of X̄i,0 as “αI ≤ X̄i,0X̄T

i,0 ≤ ᾱI”, which im-
plies X̄i,0 is of full rank and X̄i,0X̄T

i,0 is invertible. Note that,
for X̄i,0 to be full rank, Ni,min needs to be larger than or equal
to the dimension of x̄i[N], ‘n(n+1)/2’. So, in the implemen-
tation method, the agent should collect at least n(n+ 1)/2
data points at each iteration for satisfying Assumption 3.

6.1 Implementation of policy evaluation with a finite k

Recall that the basic operation of I-GPI is the one-step DP
recursion (12); at each policy evaluation step of Algorithm
1, the agent performs the one-step DP recursion k-times.
In the following, we present a sub-algorithm which deter-
mines Pi| j+1 based on the quantities Pi| j, xi[0], and the sam-
pled data (xi[N],Wi[N]) for N = 1,2, · · · ,Ni,max. To derive
the method, note that, for t = ti +(N− 1)Ts, the terms in
(12) can be rewritten as Vi| j(xt) = xT

i [N− 1]Pi| jxi[N− 1] =
(x̄i[N−1])T Θ(Pi| j) and

∫ t+Ts

t
xT

τ QKixτ dτ =Wi[N]−Wi[N−1],

respectively, where Θ(X) is the invertible map from an n×n
symmetric matrix X to a column vector in Rn(n+1)/2; the
column vector is made by stacking the upper triangular parts
of X on top of one another, where the off-diagonal terms are
doubled. Substituting all the equations into (12) yields

x̄T
i [N−1]Θ(Pi| j+1) = ∆Wi[N−1]+ x̄T

i [N]Θ(Pi| j). (43)

where ∆Wi[N − 1] := Wi[N]−Wi[N − 1]. Note that (43)
holds for all N = 1,2, · · · ,Ni,max. Collecting them for
N = 1,2, · · · ,Ni,max, one obtains the matrix form of (43) as

X̄T
i,0Θ(Pi| j+1) = ∆W̄i + X̄T

i,1Θ(Pi| j), (44)

where ∆W̄i :=
[
∆Wi[0] ∆Wi[1] · · · ∆Wi[Ni,max]

]T ∈ RNi,max .
Therefore, under Assumption 3, the exact Pi| j+1 satisfying
(12) can be obtained by solving the batch LS equation:

Θ(Pi| j+1) = Fi [∆W̄i]+Gi
[
Θ(Pi| j)

]
, (45)

where Fi and Gi are the matrices defined, respectively, as
Fi := (X̄i,0X̄T

i,0)
−1X̄i,0 and Gi := FiX̄

T
i,1. Now, by recursively

solving (45) k-times with Pi|0 = Pi, one can obtain Pi+1 = Pi|k
at each policy evaluation step. In the procedures, what all
the agent should additionally do at ( j+1)-th sub-step is the
substitution of Θ(Pi| j) evaluated at j-th sub-step into (45).

6.2 Determination of the iteration horizon k

To guarantee the stability and convergence, the iteration hori-
zon k and/or the update horizon } should be cautiously de-
cided at each iteration. For example, } should be sufficiently

13



small for VI-mode of convergence by Theorem 7. In this
subsection, we mainly concentrate on the determination of
k at each iteration under initial stabilizing policy u0.

Notice that all the stability and monotone convergence con-
ditions shown in the Theorems in Section 5 can be easily
checked as long as the agent knows L (Ki,Pi+1) a priori,
which depends highly on k and converges to 0 as k→ ∞ if
Ki is stabilizing. However, evaluating L (Ki,Pi+1) is not a
trivial task if the system matrix A is not known (see (24)
and the definition of L (K,P) and R(P)). Instead, if one
has X̄i,0, X̄i,1, and the information of L (Ki,Pi| j) a priori,
L (Ki,Pi| j+1) can be obtained from the equation

xT
t L (Ki,Pi| j+1)xt = xT

t+Ts
L (Ki,Pi| j)xt+Ts (46)

which can be derived using (16) in Lemma 3 and substitut-
ing eAiTsxt = xt+Ts . Since (46) holds for all t ∈ [ti, ti +NTs),
similarly to (43), one can represent (46) as

x̄T
i [N−1]Θ(L (Ki,Pi| j+1)) = x̄T

i [N]Θ(L (Ki,Pi| j)).

Then, by the same procedure to (44)–(45), we can derived
the following LS equation

Θ(L (Ki,Pi| j+1)) = Gi
[
Θ(L (Ki,Pi| j))

]
, (47)

which uniquely determines L (Ki,Pi| j+1) under Assumption
3. Moreover, by the recursive application to L (Ki,Pi| j+p)
(p ∈ N), the result can be easily generalized as follows:

Θ(L (Ki,Pi| j+p)) = (Gi)
p[Θ(L (Ki,Pi| j))

]
. (48)

Therefore, if L (Ki,Pi) (Pi = Pi|0) is given a priori, the agent
can evaluate L (Ki,Pi+1) (Pi+1 = Pi|k) for any k by recur-
sively solving (47) and/or (48). This allows the agent to de-
termine k by checking the stability and monotone conver-
gence conditions online at each iteration without knowing
the matrix A. For example, one can consider the inequality

L (Ki,Pi| j)≤ QKi| j (49)

for the closed-loop stability, where Ki| j := R−1BT Pi| j, and
determine k by k = j if L (Ki,Pi| j) satisfies (49) (see Theo-
rem 3). If Ai is Hurwitz, there is k ∈N such that the inequal-
ity (49) holds by the convergence of L (Ki,Pi| j) to zero (see
Theorem 2). Therefore, one can guarantee the closed-loop
stability under an initial stabilizing policy by determining k
at every iteration in such a way that (49) holds for the re-
spective i-th iteration.

On the other hand, the prior information of L (Ki,Pi) can
be easily obtained when P0 = 0. In this case, we have
L (K0,P0) = QK0 which is not connected to the matrix A.
Then, L (Ki,Pi) can be obtained by solving (47) or (48) and
then using (24), which yields the sequence R(P1), R(P2),
R(P3), · · · . For an arbitrary P0, however, this cannot be

done due to the lack of knowledge of the matrix A. In this
case, instead of imposing the assumption that A is known a
priori, we can use another stability condition derived from
(28) in Theorem 4 as shown below.

If defining Qi|0 := QKi and Qi| j := eAT
i Ts Qi| j−1eAiTs , then,

similarly to (46)–(48), one obtains the following LS equation

Θ(Qi| j+p) = (Gi)
p[Θ(Qi| j)

]
(50)

for any j, p ∈ Z+ and hence, any information about the sys-
tem matrix A and L (Ki,Pi) is not necessary for the com-
putation of Qi| j+p. Substituting Qi| j and QKi| j into (28), we
obtain the stability condition “Qi| j ≤ QKi| j ”, which can be
checked by solving (50), without knowing the matrix A. By
Theorem 4 and the above discussions, the choice k = j for
j satisfying Qi| j ≤ QKi| j at every i-th step preserves the sta-
bility of the closed-loop system.

7 Simulations

To verify the performance of the proposed implementation
methods and further discuss the properties of I-GPI shown
in this paper, we simulated I-GPI (Algorithm 1) with the fol-
lowing LQR problem for the load frequency control system:

A =

−5 0 −4
2 −2 0
0 0.1 −0.08

 , B =

 0
0
−0.1

 ,

Q = diag{20,10,5}, R = 0.15

(51)

which is the same framework given by Saadat (2002, Ex-
ample 12.11), except that the governor speed regulation was
set to 1.25 per unit. In all the simulations, the sine-wave ex-
ploration ut = 10−2 sin20πt was applied during Ts [s] before
every policy evaluation step, and 12 data pairs (xi[N],Wi[N])
were collected at each iteration for the data-driven imple-
mentations, i.e., Ni,max = 12 ∀i ∈ Z+. Therefore, Pi and Ki
were updated every (1+12)Ts [s] in the simulations. In all
the simulations, Pi was updated by the LS equation (45),
and for each simulation the iteration horizon k was either
set to a fixed value (Simulations 1–4) or determined by the
LS method presented in Section 6.2 (Simulation 5).

Simulation 1: This simulation is intended to verify that
all I-GPI algorithms with the same update horizon } yield
the same sequence {Pi} (see Theorem 1 and Remark 1).
The simulation was performed with (P0,K0) = (0,0) for the
same } = 0.3 [s] and several different iteration horizons
k = 3,6,12, · · · . The simulation results are shown in Fig. 3,
where the time axes were superposed and drawn only for the
case of k = 3,12. Note that all the sampling period Ts was set
by the equation kTs = }= 0.3 [s], so the simulation results
have different scales in the time domain. On the other hand,
one can see from Fig. 3 that all the I-GPI algorithms with
the same } yield the same sequence {Pi}, verifying in the
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Fig. 3. (Simulation 1) Variations of Pi for I-GPI with }= 0.3 [s].

iteration domain the equivalence of all the I-GPI methods
that have the same }.

Simulation 2 (PI-mode of convergence): In this simu-
lation, the initial conditions P0 and K0 were set to P0 =
diag{10,10,20} and K0 =

[
0 0 −14

]
, respectively, so that

the initial pair (P0,K0) satisfies L (K0,P0)≤ 0. Fig. 4 shows
the simulation results for k = 5 and Ts = 20 [ms]. In this
case, as stated in Theorem 5 and can be seen from Fig. 4,
all the closed-loop systems are stable and Pi monotonically
converges to PK∗ in PI-mode. Fig. 4(a) illustrates the state
trajectories where the marked points indicate the time in-
stant the policy was changed by the I-GPI agent. Here, the
states rapidly vary right after the marked points due to the
exploration ut = 10−2 sin20πt applied before every policy
evaluation of I-GPI. From this figure, one can see that the
states remain in a small bounded region by the stability ar-
gument. In addition, Fig. 4(b) shows the convergence of Pi
to PK∗ , where the diagonals (P11 and P33) are monotonically
decreasing. This PI-mode of convergence becomes obvious
by Fig. 4(c), which shows the eigenvalues of the difference
Pi−Pi−1 are always negative, implying monotone decreas-
ing 0 ≤ Pi ≤ Pi−1 ≤ ·· · ≤ P0. Therefore, Fig. 4(b) and (c)
show PI-mode of convergence stated in Theorem 5.

Simulation 3 (VI-mode of convergence): To further inves-
tigate the monotone convergence in VI-mode, an additional
simulation was performed with the same settings as in Sim-
ulation 1, except that } was given by }= 1.2 [s]. Then, the
results were compared with those of Simulation 1 (}= 0.3
[s]) as shown in Fig. 5 and Table 1. In both simulations,
Ts was set to Ts = 0.1 [s]. Fig. 5 shows the variations of
eigenvalues of L (Ki,Pi). In Fig. 5(a), it is shown that all
the eigenvalues of L (Ki,Pi) remain positive for }= 0.3 [s],
implying VI-mode of convergence by Theorem 7. Here, the
convergence to PK∗ is verified by Fig. 3 and the monotonicity
can be seen from Table 1, where the minimum eigenvalues
of Pi−Pi−1 for }= 0.3 [s] are all positive. This implies (40)
with l→∞ in Theorem 7. On the other hand, in the case of
}= 1.2 [s], only the minimum eigenvalue of P1−P0 (i = 1)
is positive due to the initial condition L (K0,P0)≥ 0, but the
others are not due to violations of L (Ki,Pi) ≥ 0 for i ≥ 1,
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Fig. 4. (Simulation 2) Variations of (a) state variable x, (b) Pi,
and (c) eigenvalues of the difference Pi − Pi−1 for the I-GPI
with k = 5 and Ts = 20 [ms]; the initial conditions are given by
P0 = diag{10,10,20} and u0 = 14x3.

as shown in Fig. 5(b) and Table 1 for } = 1.2 [s]. There-
fore, while Pi for }= 1.2 [s] is actually shown to converge
to PK∗ (∵ L (Ki,Pi)→ 0 by Fig. 5(b)), unlike the case with
the small } = 0.3 [s], the convergence is not monotone for
this relatively large update horizon }= 1.2 [s].

Simulation 4 (Local monotone convergence): The next
simulation focuses on the local monotone convergence re-
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Fig. 5. (Simulation 3) Variations of L (Ki,Pi) for (a) }= 0.3 [s]
and (b) }= 1.2 [s].

gions Ω1
i and Ω2

i in Theorem 6. The I-GPI simulations were
performed for various } > 0, as shown in Fig. 6 and Ta-
ble 2. The time horizon was fixed to Ts = 0.1 [s] for all
the simulations, and all of the other parameters were set
to those in Simulation 1. For each iteration and each },
we verified that Ai remains Hurwitz. Table 2 shows the
variations of ρ(1,i) + ∥eAi}∥ for various }. Note that from
the definition of Ω1

i , one can see that if L (Ki,Pi) satisfies
“ρ(1,i)+∥eAi}∥< 1”, then Pi belongs to Ω1

i , so that local 1st-
order monotone decreasing is guaranteed by Theorem 6. As
shown in Table 2, the quantities are less than “1” for i ≥ 2
and h≥ 1.2 [s]. For h≥ 0.3 [s], Pi ∈Ω1

i for i≥ 5 can be in-
ferred from Table 2. Table 2 also shows that i) ρ(1,i)+∥eAi}∥
converges to the fixed values as i→ ∞ for all }, and ii) the

Table 1
(Simulation 3) Variations of the min. eigenvalue λ3(Pi−Pi−1)

i }= 0.3[s] }= 1.2[s] i }= 0.3[s] }= 1.2[s]
1 1.16e-00 1.59e-00 6 6.94e-08 -7.59e-06
2 3.53e-02 -2.30e-00 7 3.36e-09 -8.98e-08
3 1.07e-03 -2.76e-01 8 1.66e-10 -4.80e-10
4 3.72e-05 -1.38e-02 9 8.29e-12 -2.53e-11
5 1.52e-06 -3.97e-04 10 4.74e-13 -2.22e-12
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Fig. 6. (Simulation 4) Variations of (a) ρ(2,i)+∥eAi}∥/∥L (Ki,Pi)∥
and (b) P33 for several }.

fixed values in the limit also converge to zero as }→ ∞, so
condition Pi ∈Ω1

i is more likely satisfied as }→ ∞.

Fig. 6(a) shows the variations of ρ(2,i)+∥eAi}∥/∥L (Ki,Pi)∥.
Remember that if this quantity is less than ‘1’, then local 2nd-
order monotone decreasing condition Pi ∈ Ω2

i in Theorem
6 is achieved. Unlike the results in Table 2, this quantity
becomes larger than ‘1’ after finite number of iterations for
}≤ 10 [s] as shown in Fig. 6(a), e.g., Pi /∈Ω2

i for i≥ 5 and
}= 2.5 [s]. On the other hand, for }= 20 [s] and }= ∞ [s]
(I-PI), one can infer from Fig. 6(a) that Pi ∈Ω2

i for all i, so
2nd-order monotone convergence is achieved by Theorem 6.
This corresponds to the fact that I-GPI with sufficiently large
} (}≥ 20 [s] in this case) approximately equals I-PI which
guarantees monotone convergence to PK∗ with order 2. As
implied by Theorem 6 and the above results, the parameters
Pi converge to the optimal solution as shown in Fig. 6(b) for
the parameter P33 and for all }.

Simulation 5 (I-GPI with adaptive iteration horizon k):
The purpose of this last simulation is to verify the perfor-
mance of I-GPI when the iteration horizon k is determined
by the method presented in Section 6.2. All the simulation
conditions were set to those used in Simulation 1, but k is
determined based on the inequality Qi| j ≤ QKi| j , where Qi| j
is evaluated by (50). At each i-th iteration, the agent recur-
sively evaluates Qi| j and Pi| j and chooses k= j if Qi| j ≤QKi| j .
In this simulation, the inequality is checked at every even
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Table 2
(Simulation 4) The variations of ρ(1,i)+∥eAi}∥ for several }.

update horizon }
i

0.3 [s] 1.2 [s] 2.5 [s] 5.0 [s] 10 [s] ∞ [s]
1 1.2030 2.3497 5.9446 12.8189 18.4420 19.6395
2 1.2084 0.4684 0.2321 0.2366 0.2414 0.2421
3 1.1056 0.4569 0.1725 0.1844 0.2045 0.2078
4 1.0174 0.4562 0.1161 0.0753 0.1064 0.1129
5 0.9627 0.4562 0.1049 0.0092 0.0162 0.0188
6 0.9335 0.4562 0.1046 0.0027 0.0003 0.0003
∞ 0.9072 0.4562 0.1046 0.0026 0.0000 0.0000
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Fig. 7. (Simulation 5) Variations of Pi for I-GPI with adaptive k.

Table 3
(Simulation 5) Variations of k and the maximum of Reλ j(Ai)

i k max j Reλ j(Ai) i k max j Reλ j(Ai)

1 8 -0.1705 5 2 -1.4981
2 2 -0.1705 6 2 -1.5216
3 2 -1.4065 7 2 -1.5364
4 2 -1.4616 8 2 -1.5454

number of j = 2,4,6, · · · until it is satisfied. The simulation
results are shown in Fig. 7 and Table 3, where Fig. 7 de-
scribes the convergence of Pi to PK∗ . In this case, the itera-
tion horizon k was determined to k = 8 for i = 1 and k = 2
otherwise, all by Qi| j ≤QKi| j . This preserves the stability of
Ai as shown in Table 3.

8 Conclusions

This paper focused on I-GPI methods applied to LQR prob-
lems and investigated their properties. We have shown that
i) I-GPIs with the same update horizon }= kTs are all equal
and have the same convergence speed in the iteration do-
main, and ii) the approximated value function in policy eval-
uation of I-GPI monotonically converges to the exact one
as }→ ∞. These implied that i) I-GPI in the limit }→ ∞
is the same as I-PI, and ii) for the same }, a trade-off ex-
ists between the computational complexity k and the update
speed Ts. Based on these results, a pair of monotone conver-
gence properties, namely, PI- and VI-mode of convergence,

were investigated for I-GPI (Fig. 2(a)). In PI-mode, I-GPI
behaves like I-PI (}→∞), and in VI-mode, it performs like
VI for DT LQR and infinitesimal GPI (}→ 0). Taking all
of these into consideration, a new spectral classification of
I-RL methods was established with respect to }, where in-
finitesimal GPI and I-PI are posed on two extreme tips of
the spectrum (Fig. 1). Two matrix inequality conditions for
stability and the region of local monotone convergence were
also presented with detailed discussions in relation to PI-
mode of convergence and stability (Fig. 2(b)). LS imple-
mentation methods of I-GPI were also proposed, which are
able to adaptively determine the iteration horizon k based
on those properties. Finally, five numerical simulations were
carried out to verify and further investigate those individual
properties and implementation methods.
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Appendix

A Proof of Lemma 2

Assume that {Pi} converges. Then, {Ki} also converges due
to Ki = R−1BT Pi for i≥ 1. Let K̄ and P̄ be their respective
limit points. Then, taking the limit i→ ∞ of (22), we have

0 = lim
i→∞

(Pi+1−Pi) = lim
i→∞

∫ }

0
eAT

i τL (Ki,Pi)eAiτ dτ,

which implies L (K̄, P̄) = 0. Since L (Ki,Pi) =R(Pi) holds
for i≥ 1 by Ki = R−1BT Pi, “L (K̄, P̄) = 0” again implies the
ARE “R(P̄)= 0”. This ARE has the unique solution P̄=PK∗

since (A,B,S1/2) is stabilizable and detectable. Therefore,
the limit points satisfy P̄ = PK∗ and K̄ = K∗, completing the
proof.

B Proof of Lemma 5

The proof is almost parallel to that given by Feitzinger
et al. (2009, Theorem 4.3). First, note that R(Pi+1) =
L (Ki+1,Pi+1) and (5) in Lemma 1 allow the following
expression:

AT
i+1Pi+1 +Pi+1 Ai+1 +QKi+1︸ ︷︷ ︸

=L (Ki+1,Pi+1)

−L (Ki,Pi+1) =−∆KT
i R∆Ki.

Assuming Ai+1x = λx for λ ∈C with Re(λ )≥ 0 and x∈Cn

with x ̸= 0, we have

x̄T [(λ̄ +λ )Pi+1 +QKi+1 −L (Ki,Pi+1)
]
x =−x̄T ∆KT

i R∆Kix,

where x̄ and λ̄ are the complex conjugates of x and λ ,
respectively. Here, by the assumptions of 0 ≤ Pi+1 and
L (Ki,Pi+1)≤QKi+1 , the matrix on the left hand side is pos-
itive semi-definite, but −∆KT

i R∆Ki on the right hand side
is obviously negative semi-definite. Therefore, we obtain
x̄T (∆KT

i R∆Ki)x = 0. This again implies (Ki −Ki+1)x = 0
due to the positive definiteness of R, and thereby we finally
obtain Kix = Ki+1x, that is, Aix = Ai+1x. This implies that
Ki is not a stabilizing policy (since Re(λ )≥ 0), but Ki is as-
sumed stabilizing in Lemma 5, a contradiction. Therefore,
Ki+1 should also be a stabilizing policy, which completes
the proof.
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